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1. Overview of the deliverable
This report describes the initial developments of a multi-faceted IM-TWIN affective classification
processing pipeline designed to classify the emotional state of a patient using physiological
biosignals. Signals are obtained using the custom designed T-Shirt with embedded
textile-electrodes by PLUX. As the IM-TWIN system is expected to be primarily used in noisy
everyday situations, the system has to be designed durable, robust and noise-resilient. In this
report we describe the work on the specific processing pipelines for ElectroCardioGraphy (ECG)
and ElectroDermal Activity (EDA) analysis. Both biosignals are known measures for arousal.
Additionally, there are hints that ECG is also usable for valence estimation. Together they allow
the estimation of emotions using the valence-arousal model.

In the next section, we will describe the theory behind emotional models including the
valence-arousal model. Next, we zoom in on the ECG and EDA specific processing pipelines.
We end with a concise discussion and conclusion describing future steps.

2. Emotional models
Emotion is a complex phenomenon that has been studied extensively by psychologists,
neuroscientists, and philosophers for many years [1,2]. One of the challenges in studying
emotions is developing a model that can accurately capture the range of experiences people
have. There are several emotion models that have been proposed over the years, each with
their own strengths and weaknesses.

One of the earliest models of emotions was the basic emotions model, which posits that there
are a set of discrete, universal emotions that are biologically hardwired into humans. Basic
emotions include but are not limited to happiness, sadness, anger, fear, disgust, and surprise
[3]. While this model provides a useful framework for understanding emotions, it has been
criticized for oversimplifying the complexity of human emotional experiences. As a
consequence, the dimensional approach was invented which suggests that emotions can be
described along three primary dimensions: valence, arousal, and dominance [1,4]. Valence
refers to how positive or negative an emotion is, arousal to how intense the emotion is, and
dominance to how much control a person has or to what extent an individual feels restricted in
his behavior [1]. Often, the third dimension, dominance, is ignored for simplification [5].
Dominance is simply too difficult to measure using only biosignals.

The valence-arousal approach is popular in psychophysiological research because both map
directly to specific biosignals [2]. Arousal has been shown to correlate strongly with EDA, EMG,
and ECG. Valence, on the other hand, correlates with facial EMG and brain activity (EEG). As
such, in the scope of the IM-TWIN project, we use the valence and arousal dimensions to map
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the distinct emotional states of the child. Specifically, we identify three major states: i) low
arousal, ii) high-arousal, negative-valence, and iii) high-arousal, positive-valence.

Figure 1: The valence-arousal model maps emotions to a 2D space where the x-axis
represents the valence and the y-axis the level of arousal. Discrete emotions are shown to
show the mapping between both the discrete and continuous emotional models.

To categorize the child’s emotions into these three major states, we use ECG and EDA
measured via textile biosensors embedded into a T-Shirt developed by hardware manufacturer
PLUX. Typically, the Skin-Conductance Level (SCL) and Skin-Conductance Responses (SCRs)
of EDA are used to estimate the level of arousal physiologically. Heart Rate (HR) and Heart
Rate Variability (HRV) are also known to be good estimators of arousal, but tend to be used for
valence estimation as well. However, the quality of such valence estimators is questionable.
Unfortunately, golden standard measures for valence such as facial EMG and brain activity
(EEG) are not an option. Facial EMG would be too obtrusive for the child and EEG is unusable
without clinically validated wet electrodes which are tedious to set up. Hence, EDA and ECG are
IM-TWIN’s two primary biosignals.
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3. Physiological signal processing
The T-Shirt developed by PLUX incorporates several biosensors, three of which have been
identified as indicators of emotional and/or mental state: i) ECG, ii) EDA and iii) temperature. It
is important to note that these signals differ in their response time, with temperature being the
slowest to respond, taking 15-20 seconds [5]. EDA reacts significantly faster with changes
observable a few seconds after a stimulus. ECG has the fastest response time, taking only 1 to
2 seconds [5].

As real-time emotion estimation is crucial for the scope of IM-TWIN, temperature cannot be
used as a direct measure. Still, temperature could serve as a correction measure for EDA [2,5].
Regarding IM-TWIN’s real-time requirements, ECG seems to be the best fit. However, ECG
cannot serve as a reliable valence-arousal estimator on its own due to its high sensitivity to
noise, which distorts the signal. In contrast, EDA is less sensitive to noise, but slower to
respond. Thus, a combination of ECG and EDA is proposed as the optimal solution. In the
following sections, we will provide a detailed analysis of both signals and present a custom
processing pipeline specifically designed to operate on real-world recordings, which are
inherently noisy.

3.1 ElectroCardioGraphy (ECG)
ElectroCardioGraphy (ECG) is a medical diagnostic tool that records the electrical activity of the
heart over a period of time using electrodes attached to the skin. It was first introduced in the
late 1880s by Waller [6], who developed a system to record the electrical signals generated by
the heart and display them as a graph known as an electrocardiogram. ECG has since become
a widely used and essential tool for the diagnosis of various cardiovascular diseases and
abnormalities. By analyzing the amplitude, duration, and shape of the waves created by the
contractions of the different heart muscles, clinicians can diagnose various cardiac conditions [7]
and monitor the effectiveness of treatments [8].

In recent years, ECG has also been used as a non-invasive method to estimate emotional and
mental states [2], making it an increasingly valuable tool in the field of affective computing,
especially in the scope of IM-TWIN.
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Figure 2: The ElectroCardioGram (ECG) waveform consists of several distinct components.
The P wave, QRS complex and T wave. Generally, the QRS complex is used for HR and HRV
extraction due to its striking morphology.

ECG has a characteristic waveform that is made up of several distinct waves and components
(see Figure 2). These waves are labeled P, Q, R, S, and T. The P wave represents the
depolarization of the atria, which is the contraction of the atrial muscles as they push blood into
the ventricles. The QRS complex represents the depolarization of the ventricles, which is the
contraction of the ventricular muscles as they pump blood out of the heart. Finally, the T wave
represents the repolarization of the ventricles as they prepare for another cycle of contraction
and relaxation.

Of these waves, the QRS complex plays a crucial role in determining HR and HRV. In HR
analysis, QRS complex detection serves as the primary indicator of heartbeats. By measuring
the time between successive QRS complexes, clinicians can calculate the heart rate, which is a
fundamental metric for assessing the physical state of the body. Similarly, in HRV analysis, QRS
complex detection is used to determine the variability in the time intervals between successive
heartbeats. This variability is a crucial parameter for assessing the health of the autonomic
nervous system, which plays a significant role in regulating heart rate and blood pressure.

In both HR and HRV analysis, QRS complex detection acts as the first step in the processing
pipeline. Without QRS complex detection, heart beats cannot be separated, and no HR or HRV
can be extracted. When ECG is measured in controlled, clinical settings using wet, adhesive
electrodes, QRS complex detection is a trivial problem that has already been solved decades
ago [9]. Their odd morphology makes them easily detectable using simple slope-based
detectors. However, when dry electrodes are used in noisy, every-day environments, peak
detection becomes much more challenging. Sudden bursts of noise are easily mistaken for QRS
complexes (see Figure 3).
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Figure 3: ECG recorded with wet, adhesive electrodes in controlled, clinical environments
poses no challenge for QRS complex detection. However, when ECG is obtained using dry
electrodes in noisy environments, QRS detection becomes much harder.

Reliable detection of QRS complexes in clean and noisy ECG has already been a research
topic for four decades. Initially, the development of automated QRS complex detection was
difficult due to the availability of annotated datasets. This all changed when the first open-source
datasets were released in the early ‘80s [10]. Suddenly, QRS complex detection became a
problem that anyone could solve without the need for clinically validated equipment or patients.
Consequently, the first detection algorithms began to appear short after. A very popular detector
from that time was developed by Pan and Tompkins[9]. Their detector is still the most accessible
and, hence, most used QRS detector today. Besides Pan and Tompkins’ algorithm, many
techniques have been developed. Together they make up the vast algorithmic landscape we
experience today.

In IM-TWIN, we need a QRS detector that is both fast and accurate. However, there are
numerous QRS detection algorithms making it difficult to select one. Hence, we performed a
concise benchmark of 4 algorithms [9,11,12,13] on 2 datasets. The algorithms were chosen to
represent four different strategies towards QRS detection: derivative-based,
decomposition-based, deep learning-based, and morphology-based detection. To test
performance on clean ECG data, the MIT-BIH dataset [10] was selected; a clinical dataset
recorded with wet electrodes. The Check-Your-Biosignals-Here initiative database [14] was
chosen to represent the ECG we expect in IM-TWIN; noisy, but usable ECG recorded with dry
electrodes. Benchmark results are shown in Figure 4.
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Figure 4: Accuracy in terms of F1-score of four QRS complex detection algorithms on a clean
and noisy ECG dataset. Boxplots show the distribution of accuracies per dataset across all
recordings.

Pan-Tompkins’ derivative-based algorithm and the deep learning Convolutional Neural Network
(CNN) based algorithm [12] performed best on the clean and noisy datasets. Others suffered
from large deviations in accuracy across records. Hence, they do not show reliability and cannot
be used in the scope of the IM-TWIN project. When we compare Pan-Tompkins and the
CNN-based algorithm, we see that both have very small deviations in accuracy. However,
Pan-Tompkins still fails on two noisy ECG records. The QRS detection performance of both
algorithms on one of them is shown in Figure 5.

Figure 5: The 1985 Pan-Tompkins detector [9] and recent CNN-based deep learning detector
[12] compared on a noisy record from the CYBHi dataset. Pan-Tompkins becomes unstable
due to the high noise level. In contrast, the CNN-based detector makes no mistakes.

Figure 5 provides a clear distinction between Pan-Tompkins and the CNN-based detector when
faced with severe noise. In such situations, the Pan-Tompkins detector becomes unstable,
generating many false positives. As further analysis uses the time between two consecutive
beats, one can easily see that HR and HRV estimations become meaningless. Pan-Tompkins
only shows this behavior on two records. However, the ECG quality of both records falls well
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within the range of ECG quality we expect to see in IM-TWIN. Hence, Pan-Tompkins shows to
be too unstable. The deep learning algorithm is, therefore, favored over the others.
Unfortunately, deep learning does not come without limitations. In this case, computational cost.
When comparing all algorithms in terms of computational cost, the results are clear. Figure 6
shows the number of calculations (additions and multiplications) needed to process one second
of 1000 Hz ECG.

Figure 6: The Pan-Tompkins and CNN-based deep learning detector compared on
computational complexity. The CNN-based detector needs 66 million additions and
multiplications per second of ECG, whereas Pan-Tompkins only needs 120 thousand.

The deep learning-based CNN detector is 550x more expensive to execute than the derivative
based Pan-Tompkins. In practice, this translates to a 550x higher power usage or 550x slower
calculation. Both are very unpleasant in the scope of  IM-TWIN’s requirements.

Processing noisy, real-world ECG in resource and/or time limited environments remains
challenging. On the one hand, deep learning achieves superior detection accuracy at an
astronomical cost. On the other hand, traditional derivative-based algorithms are efficient but
become unstable in noisy conditions. Consequently, new approaches have to be explored to
merge the best of both worlds: fast and accurate QRS detection.

3.2 ElectroDermal Activity (EDA)
Electrodermal activity (EDA) is a measure of the electrical conductance of the skin, which
reflects changes in the activity of sweat glands in response to various stimuli. Also known as
skin conductance or galvanic skin response, EDA was discovered by Vigouroux in the late 19th
century to reflect one’s psychological state [15]. Vigouroux observed that the skin's resistance to
electrical current decreased when the subject was emotionally aroused. Since then, EDA has
been widely used as a tool for psychophysiological research, particularly in the fields of emotion
and stress, where it is used to measure changes in sympathetic nervous system activity [2,15].
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Figure 7: Top: Raw EDA signal. Middle: Tonic component reflecting the low-frequency skin
conductance level (SCL). Bottom: Phasic component reflecting the higher-frequency skin
conductance response (SCR).

EDA is generally analysed in the time-domain. Typically, EDA is split into a tonic and phasic part
[15]. The tonic component represents long-term Skin Conductance Level (SCL) and the phasic
part the short-term Skin Conductance Responses (SCRs). The latter can be both specific or
non-specific. Specific SCRs occur within a predefined interval after a stimulus. In other words,
they can be directly related to a specific stimulus. Non-specific SCRs occur randomly.
Researchers have hypothesized that the intensity and frequency of such NS-SCRs is related to
mental state. In IM-TWIN, we only focus on NS-SCRs as there are, by definition, no specific
SCRs in IM-TWIN’s real-world environment.

EDA analysis in the context of IM-TWIN is restricted to the analysis of non-specific skin
conductance responses (NS-SCRs). However, there is little research examining the direct
relationship between NS-SCRs and arousal, as defined in the valence-arousal model. Most
studies that investigate EDA tend to focus on physical and long-term stress estimation. It
remains unclear whether NS-SCRs and emotional stress are linked to lower levels of arousal, or
if they enable the continuous estimation of arousal, rather than only act as a discriminator
between low and high levels of arousal. Consequently, we set out to compare two descriptive
features of NS-SCRs to real-time self-reported arousal, using a unique dataset called the
Continuously Annotated Signals of Emotion (CASE) dataset [16]. This dataset contains
recordings of various biosignals, including EDA, along with continuous annotations of emotional
state by participants. Participants were asked to annotate their feelings while they viewed
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emotionally stimulating videos. As the annotations are continuous, it is possible to correlate
EDA and emotional state in real-time.

Figure 8: In the Continuously Annotated Signals of Emotion (CASE) dataset, participants
annotate their feelings continuously on a 2D valence-arousal plane using a joystick. We only
extracted the arousal axis to study its correlation with EDA.

In CASE [16], the self-reported annotations are obtained with a joystick that the participant
controls during the entire experiment. As such, annotations are represented as trajectories in
Cartesian space where the x and y-axis represents valence and arousal, respectively (see
Figure 8). Normalization was performed to correct for the personal bias across participants (i.e.,
one person might annotate more intensely in general, compared to others).

The Neurokit2 package in Python [17] is utilized to extract the NS-SCRs from the EDA signal.
The signal is then partitioned into 30-second windows to compute the frequency and average
amplitude of the NS-SCRs. Concurrently, a 30-second moving average filter is applied to the
vertical axis of the joystick trajectory. The average arousal is then determined in the same
30-second windows as the EDA signal. Finally, the correlation between the NS-SCR frequency
and average amplitude and average arousal is evaluated using a Pearson correlation test (see
Figure 9). This process is repeated for every video and participant. Results are categorized per
video as not every video was designed to elicit arousal. As such, the videos that were selected
to be ‘boring’ or ‘relaxing’ were grouped as ‘low arousal’ videos. The ‘amusing’ videos were
categorized as ‘medium arousal’ and ‘scary’ videos as ‘high arousal’ contexts. Results are
shown in Figure 10
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Figure 9: Left: The frequency and amplitude of Non-Specific Skin Conductance Responses
(NS-SCRs) is plotted together with the arousal axis of the continuous annotations. Right: The
average frequency and amplitude within 30s windows is calculated and plotted against average
arousal. Based on this plot, a Pearson Correlation test is performed to calculate correlation.

Figure 10: Distribution of correlation coefficients for frequency and amplitude of ’non-specific’
Skin Conductance Responses (NS-SCRs) with self-reported arousal. Distribution is categorized
into three arousal contexts based on the videos that participants were watching. Boring and
relaxing videos were labeled as ‘low arousal’ contexts. Amusing as ‘medium arousal’ and scary
as ‘high arousal’ contexts.

In low arousal contexts, we observed no significant correlations. Conversely, when a context
elicits a sufficiently strong stimulus, such as medium and high arousal contexts, significant and
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strong correlations between self-perceived emotional arousal and EDA features were identified
(corr.=0.5). This suggests the existence of a threshold, whereby arousal levels above a certain
threshold are directly reflected in the physiology. Consequently, we conclude that emotional
arousal cannot be estimated by EDA in isolation, and necessitates contextual or multimodal
input. If one can determine the contextual state through other sources of information, EDA may
serve as a dependable estimator for emotional arousal as per the valence-arousal framework. In
the context of IM-TWIN, this implies that EDA analysis should be complemented with other
biosignals such as ECG, along with other sources of information such as audio and/or video.

Currently, NS-SCRs are extracted using thresholds in the time-domain. Unfortunately, this
methodology is very sensitive to noise. Noise, even when suppressed by low-pass filtering,
makes NS-SCR detection in the time-domain challenging (see Figure 11). As such, more robust
techniques are needed to extract SCRs reliably in noisy, real-world EDA.

Figure 11: Extraction of peaks from EDA is highly noise-sensitive. Even noise suppressed by
low-pass filtering will affect NS-SCR detection to the extent it becomes unusable.

Analyzing and extracting SCRs in the frequency or time-frequency domains could offer new
ways to handle real-world noise. Time-frequency techniques such as the Short-term Fourier
Transform and the Continuous Wavelet Transform have already been applied to EDA
successfully [18,19,20]. Future developments can test noise-resilience of such techniques and
their value for real-world signal analysis.
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4. Future Developments
In conclusion, processing noisy ECG and EDA signals in IM-TWIN’s resource and time-limited
environment presents significant challenges. In ECG analysis, deep learning algorithms offer
superior detection accuracy but are computationally expensive. In contrast, traditional
heuristic-based algorithms are efficient but become unstable in the presence of noise.

Conversely, in EDA analysis, the common technique of extracting NS-SCRs in the time-domain
using thresholds is very sensitive to noise for EDA signals, making it challenging to apply in
real-world scenarios. To address these challenges, future developments should focus on finding
new approaches that combine the strengths of existing algorithms and achieve fast and
accurate QRS detection for ECG signals, and more robust techniques to extract SCRs reliably
in noisy, real-world environments. As signal quality is key in the scope of IM-TWIN’s difficult
challenges, such improvements are vital for IM-TWIN to succeed.
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