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1. Overview of the deliverable
This deliverable contains the final version of the personalised affect classification pipeline based
on the biosignals recorded by the IM-TWIN T-Shirt. The core of the deliverable is sectioned as
follows:

2. Data, containing the subsections
2.1. Recordings, describing the characteristics of the data acquired by CNR,

Sapienza, and CRI and the processing of the annotation data
2.2. ECG features, describing the ECG feature extraction and aggregation using

dynamic and static segmentation of the recordings
2.3. EDA features, describing the EDA feature extraction and aggregation using

dynamic and static segmentation of the recordings
3. Statistical analysis, containing the subsections

3.1. MANOVA, describing the omnibus analysis and all assumption checks performed
to assess the dataset’s learnability

3.2. Follow-up analysis, describing the PCA and LDA analyses performed to inspect
the interplay between the significant features found in 3.1

3.3. Classification, describing the validation of a LDA-based classifier using a
challenging real-world validation scheme.

2. Data

2.1 Recordings
Data was collected by two institutes: i) CNR & Sapienza and ii) CRI. CNR and Sapienza
conducted experiments on 4 autistic children and CRI collected and annotated 12 records from
10 typically developed (TD) children. The experiments with the autistic children did not follow a
strict protocol. Instead, the children were instructed to play with the PlusMe toy and the focus of
these experiments were largely on signal quality and comfortability of the T-Shirt. UU did a initial
analysis of signal quality using the specially designed Signal Quality Indicator (SQI) (see Report
D2.2). The results are shown in Figure 1a.
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Figure 1a: Visual representation of signal quality of four T-Shirt recordings from autistic children
playing with the PlusMe toy. The children were instructed to play with the PlusMe toy. As such,
the records do not have annotations of emotional state. However, it does show the potential of
the IM-TWIN system to capture high-quality biosignals in ambulatory situations.

On the other hand, CRI employed a study specifically designed to evoke positive, negative, and
low-arousal emotional states in the typically developed children. In this report, we will focus on
these recordings as these contain annotations of emotional state. Nevertheless, the four
recordings with autistic children really shows IM-TWIN’s potential of capturing high-quality
biosignals from playing children.

Figure 1b visually presents the annotations, highlighting regions in each recording
corresponding to the various emotional states. Table 1 provides a breakdown of the duration for
each type of annotation per recording. Both Figure 1b and Table 1 make it apparent that the
dataset is unbalanced. Specifically, the experimentally challenging negative arousal state is
underrepresented, being annotated for a total of only 9 minutes—seven times less than the
baseline state.
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Figure 1b: Overview of all annotated recordings. Purple: Baseline, Green: Positive
aroused, Red: Negative aroused, Blue: Low aroused.
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Table 1: All recordings and the amount of data per affective state. Times are noted as
minutes:seconds.

name Baseline Positive Negative Low engagement

SL1_1 7:57 3:58 1:53

SL5_1 2:34 8:11 1:16

SL7-1 5:14 6:13 1:36 0:45

LT1_1 1:52 0:11 0:11 1:50

LT2_1 7:42 1:49 0:17 1:22

LT3_1 6:33 5:18 0:13 1:07

LT4_1 4:04 4:23 1:39

LT5_1 11:58 3:19 1:23 1:51

SL1_2 3:38 10:15 1:39

SL2_2 4:41 3:48

LT2_2 8:41 2:05 1:02

SL10 0:16 3:38 0:12

Total 01:05:10 53:08 09:03 09:13

In some recordings, the annotations were highly detailed, capturing affective states as brief as
10 seconds. However, biosignals typically do not respond quickly enough to reflect such
short-lived emotional states except when highly intense. To address this, two morphological
filters were applied to the annotations. The first filter merged annotations of the same type if
they were less than 120 seconds apart and not separated by annotations of a different type. The
second filter removed annotations shorter than 60 seconds if they were situated between
annotations of another type. These two morphological operations, collectively referred to as
merge filtering, reduced the number of short, fragmented annotations and increased the length
of the remaining annotations. Figure 2 displays the annotations post-filtering.
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Figure 2: Overview of annotations after merge filtering. The merge filtering removed very short
annotations (<30s) and merged scattered annotations when they were closer than 120s

together without being separated by annotations of a different kind. Purple: Baseline, Green:
Positive aroused, Red: Negative aroused, Blue: Low aroused.
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Table 2: Amount of data per affective state per recording after merge filtering.
name Baseline Positive Negative Low engagement

SL1_1 7:57 3:58 1:53

SL5_1 2:34 8:19 1:17

SL7-1 5:25 5:04 1:36

LT1_1 3:19 3:37

LT2_1 8:07 3:53 1:22

LT3_1 7:35 5:09 1:07

LT4_1 3:54 6:51 1:28

LT5_1 12:23 2:19 1:23

SL1_2 3:16 12:49 1:15

SL2_2 4:55 3:34

LT2_2 8:41 3:15 1:02

SL10 5:30

Total 01:08:06 01:00:41 07:35 08:25

Next, feature signals were calculated from the preprocessed ECG and EDA signals. These
feature signals were then segmented using the filtered annotation regions.

2.2 ECG features
Report D2.2 outlines a robustly designed pipeline for extracting QRS peaks of high quality from
signals contaminated with substantial noise bursts. The processing pipeline employed a
two-stage approach. Initially, the signal's quality was assessed, after which QRS peaks were
extracted using a robust deep learning network. Subsequently, peaks were locally readjusted to
enhance timing accuracy and reduce jitter.

The extracted interbeat intervals were then subjected to analysis, focusing on a broad spectrum
of HR (heart rate) and HRV (heart rate variability) features. Existing literature identifies
numerous features, which can be grouped into three categories: time-domain,
frequency-domain, and nonlinear features [1,3]. Time-domain features encompass the mean
and standard deviation of all interval durations within a specified time window.
Frequency-domain features entail interpolating the interbeat interval (IBI) signal by fitting a
low-frequency sine wave to the interbeat intervals, followed by assessing its frequency spectrum
in terms of low, medium, and high-frequency power. The ratios between these powers are also
considered features. Nonlinear dynamics, on the other hand, employ Poincare plots, phase
space representations, or metrics from information theory to quantify the degree of nonlinearity
or chaos, and therefore, variability, among the intervals [2]. Table 3 provides a list of the most
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commonly utilised features within each category, the minimum duration required and its
physiological basis when known.

Table 3: Overview of interbeat interval based HR and HRV metrics. Based on combined
information from [3] and [4].

Name Description Minimum
requirement

Physiological basis Used

Time domain

Mean NN Average NN interval 1-2 minutes Yes

SDNN Standard deviation of NN
intervals

10-60s [4] Cyclic components Yes

RMSSD Root Mean Square of
Successive Differences

10-60s [4] Vagal tone Yes

SDRMSSD Ratio between SDNN and
RMSSD

10-60s [4] Correlates with LFHF Yes

Frequency domain

VLF Power in very low frequency
range (<0.04Hz)

>5 minutes Long-term regulation
mechanics

No

LF Power in low frequency range
(0.04-0.15Hz)

2-5 minutes Sympathetic and
vagal activity

Yes

HF Power in high frequency
range (0.15-0.4Hz)

1-2 minutes Vagal tone Yes

LFHF Ratio between low and high
frequency power

2-5 minutes Sympathethic and
vagal actvitiy

Yes

LFn Normalized low frequency
power using total frequency
power

2-5 minutes See LF Yes

HFn Normalized high frequency
power using total frequency
power

1-2 minutes See HF Yes

LnHF Log normalized high
frequency power

1-2 minutes See HF Yes

Non-linear

SD1 Poincare plot spread along
the line of identity

>5 minutes No
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SD2 Poincare plot spread
perpendicular to the line of
identity

>5 minutes No

SD1/SD2 Ratio between SD1 and SD2 >5 minutes No

ApproxEn Approximate entropy >5 minutes No

SampEn Sample Entropy >5 minutes No

CD Correlation dimension (min.
num. of variables to describe
the system

>5 minutes No

IM-TWIN's requirement for real-time processing necessitated the selection of short-term HRV
(heart rate variability) features. Consequently, non-linear features were excluded. Two
segmentation windows were utilised: a shorter, non-overlapping 30-second window for
time-domain features [4] and a longer 120-second window with a 90-second overlap for
extracting high and low-frequency features [3]. The HRV features selected include MeanNN,
SDNN, RMSSD, SDRMSSD, LF, HF, LFHF, LFn, HFn, and LnHF. Notably, RMSSD and
HF-derived features are significant due to their physiological basis in reflecting vagal tone
activity [5]. Vagal tone refers to the activity of the vagus nerve, part of the parasympathetic
nervous system that activates during rest [1]. Consequently, a high vagal tone indicates a
low-aroused state.

Features were extracted employing two methodologies: dynamic and static segmentation. In
dynamic segmentation, time and frequency features were initially extracted using 30s and 120s
sliding windows, respectively. The result is a feature signal that produces one feature value
every 30 seconds, applicable to both 30s and 120s windows due to the 90s overlap. Feature
values within an annotation region were then averaged to yield a single value per region,
forming the dynamic feature set. In contrast, static segmentation directly uses annotation
regions to segment ECG data. Following recommendations to use windows of uniform duration
[3], annotation regions were either shortened or expanded from the centre to fit a 120s window,
the shortest feasible window for extracting both time and frequency features. The outcome is
the static feature set. This methodology is exclusively performed on merge-filtered annotations
to minimise overlap between adjusted annotation regions. Both methodologies are
schematically illustrated in Figure 3, while Figures 4 and 5 display examples of each
segmentation approach.
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Figure 3: We use two segmentation methodologies to go from the biosignals to one feature
value per annotation. Dynamic feature extraction uses two segmentation windows to generate
an intermediate feature signal that has one value every 30s. Values within one region are then
averaged. Static segmentation defines segmentation windows based on the annotations. Short

annotations are skipped to minimise window overlap.
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Figure 4: Example of dynamic HRV feature extraction that uses two segmentation windows for
the time and frequency based HRV features, respectively.

Figure 5: Example of static HRV feature extraction that uses one fixed width segmentation
window located in the centre of each annotation region.
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HR and HRV features were extracted for all 12 recordings using both segmentation
methodologies. Figures 6 and 7 present the resulting distributions for each annotation type in
the form of boxplots, showcasing the median, interquartile range, 95% confidence interval, and
outliers. To mitigate interpersonal variances, features were individually normalised by
subtracting the mean of the values derived from baseline segments. Consequently, a negative
overall distribution indicates that the feature holds a value lower than the baseline, and vice
versa. It's important to note that the baseline distribution does not necessarily have to be zero,
as individuals may have multiple baseline-annotated segments.

Figure 6: Distribution of all HR and HRV features for all four annotation types using dynamic
segmentation. The features are individually baseline corrected by subtracting the mean of all
baseline segments. Ba: Baseline, Lo: Low aroused, Ne: Negative aroused, Po: Positive aroused

Figure 7: Distribution of all HR and HRV features for all four annotation types using static
segmentation. The features are individually baseline corrected by subtracting the mean of all
baseline segments. Ba: Baseline, Lo: Low aroused, Ne: Negative aroused, Po: Positive aroused
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2.3 EDA features
As described in report D2.2, the Electrodermal Activity (EDA) signal is first low-pass filtered
using an adaptive wavelet-based filter to remove muscle activity (EMG) interference.
Afterwards, the signal is split into its low-frequency tonic and high-frequency phasic component.
The tonic component, reflecting the Skin Conductance Level (SCL), can be used without further
processing as its value is directly correlated to the activity of the sympathetic nervous system
[6]. Table 4 shows commonly used tonic features based on moment-theory [7].

Table 4: Commonly used features to describe the tonic EDA component or SCL within a
segmentation window.

Name Description Physiological basis

MeanTonic Mean value General SCL

SDTonic Standard deviation Reflects SCL activity

SkewTonic Skewness SCL trend

KurtTonic Kurtosis SCL trend

The phasic component of the EDA signal, which reflects the Skin Conductance Response
(SCR), indicates the short-term activity of the signal. As this signal is event-based (meaning that
specific or non-specific stimuli cause noticeable variations or "bumps" in the signal), it needs to
be processed first, particularly by extracting the peaks in the signal [6]. Subsequent feature
extraction focuses on the frequency, timing, and characteristics of these bumps. Unfortunately,
as described in report D2.2, it is not feasible to extract and analyse peaks in our EDA data due
to a strong noise component that exists within the same frequency band as the peaks.

To still extract phasic EDA features, we devised a new feature based on the power of the
frequency band. As the noise component remains relatively constant, an increase in the power
of the [0.04-0.24] Hz frequency band [10] typically corresponds with an increase in SCR peaks
(see D2.2). Because the resulting signal describes power over time at a rate of 500Hz, we use
descriptive features to aggregate the signal within each segmentation window. Table 5 presents
a list of descriptive features in the time, frequency, and nonlinear domains that we employ.

Table 5: Descriptive features used to describe the behaviour of frequency power within a
segmentation window.

Name Description Physiological basis

Time domain
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TFMean Mean value Average SCR activity

TFSD Standard deviation Reflects SCL activity

TFSkew Skewness SCL trend

TFKurt Kurtosis SCL trend

Frequency domain

LF Low frequent variations in
SCR activity

HF High frequent variations in
SCR activity

LFn LF divided by total power

HFn HF divided by total power

LFHF Ratio between LF and HF

Non-linear

SampEn Sample entropy

ApEn Approximate entropy

CD Correlation dimension

We selected all features listed in Table 5 as there are currently no guidelines about feature
extraction for the phasic time-frequency signal. Figure 8 plots the individually baseline corrected
distributions for all EDA features as boxplots showing the median, interquartile range, 95%
confidence intervals, and outliers.

16

http://www.plusme-h2020.eu


www.im-twin.eu

Figure 8: Distribution of all EDA features for all four annotation types using dynamic
segmentation. The features are individually baseline corrected by subtracting the mean of all
baseline segments. Ba: Baseline, Lo: Low aroused, Ne: Negative aroused, Po: Positive aroused

For statistical analysis, both the HR&HRV and EDA feature sets are combined into one set. This
is done for both the dynamic and static segmentation strategy. The resulting feature sets include
26 features each.

3. Statistical Analysis
Before applying machine learning techniques to detect different states of affect, we first analyse
the data using general statistical methods. Given the small size of our dataset and the high
variance among children, we face a risk of overfitting to spurious patterns in the data if we aren't
careful. Therefore, we begin by assessing overall patterns through statistical analysis. If
statistical analysis fails to find significant differences between annotations, it is highly unlikely
that machine learning, which also relies on statistics, will uncover any patterns in the data.

We initiate our analysis with a Multivariate ANalysis Of VAriance (MANOVA) test, a single test
that assesses the variance of multiple variables across multiple groups [11]. Although an
ANOVA is typically used in similar situations, we have many dependent variables (i.e., features)
in our dataset. Performing multiple ANOVAs (one for each feature) on the same dataset raises
the risk of Type I errors (false positives) [12]. Therefore, we opt to conduct an omnibus
MANOVA test to determine if there are any significant differences among the groups. In our
context, the groups correspond to three of the four annotated states: low aroused, positive
aroused, and negative aroused. We use only three of the four states because the data has
already been baseline corrected, as outlined in sections 2.2 and 2.3. As a result, the baseline
class serves as a reference and does not provide any new information.

In this section, we will employ the feature set extracted using the dynamic segmentation
approach for all tables and figures. However, we will also apply the described process to the
statically segmented feature set at the end of this section, reporting only the final results to
maintain conciseness in the report.
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3.1 MANOVA

3.1.1 Univariate assumption 1: Independence
MANOVA has several assumptions about the data that must be met before we can perform the
test [11]. First, like a traditional ANOVA, a MANOVA expects all observations to be independent.
This means that each observation must come from a unique participant, and each affective state
can only be observed once per participant. Normally, a Repeated Measures MANOVA would be
performed when there are multiple observations for each participant. However, since we only
have 2 participants with two recordings each, this approach does not suit our data. As a result,
we remove the two duplicate recordings (SL1_2 and LT2_2) from our dataset. We also remove
the shorter of the two positive aroused state measurements for SL1_1 and LT5_1. This reduces
our dataset to a total of 16 observations: 4 low, 4 negative, and 8 positive.

Table 6: Schematic depiction of the dataset used for the statistical analysis. In total there are 16
affective states observed at 8 participants. Each row corresponds to one affective state

observed at one participant. Each observation has 26 features.

# Recording Label Features

1 SL1_1 Positive [26]

2 SL2_2 Positive [26]

3 SL5_1 Positive [26]

4 SL7_1 Positive [26]

5 LT2_1 Positive [26]

6 LT3_1 Positive [26]

7 LT4_1 Positive [26]

8 LT5_1 Positive [26]

9 SL1_1 Negative [26]

10 SL7_1 Negative [26]

11 LT4_1 Negative [26]

12 LT5_1 Negative [26]

13 SL5_1 Low [26]

14 LT1_1 Low [26]
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15 LT2_1 Low [26]

16 LT3_1 Low [26]

The assumptions for MANOVA are an extension of those for the univariate ANOVA. Since a
multivariate assumption can only be valid if all separate univariate assumptions are met, we first
check the univariate assumptions before moving on to the multivariate ones. This approach is
particularly useful given the size of our dataset. With only 16 observations, and the smallest
group containing just 4, the rule of thumb suggests that we can include a maximum of 3-4
features. By first testing the univariate assumptions, we can identify and exclude any
poorly-behaved features before making our final selection of 3 features.

3.1.2 Univariate assumption 2: Normality
In a MANOVA, ANOVA’s assumption of normality is extended to an assumption of normality of
the multivariate distribution. Consequently, we first test the normality of each dependent
variable. From a visual perspective, the univariate assumption appears to be met, as can be
seen in Figures 6, 7, and 8. However, for thoroughness, we performed a Shapiro-Wilk normality
test for all features across all groups. The results are listed in Table 7. From this table, we can
see that several features cannot be used in our statistical analysis, as the null hypothesis of
normality cannot be rejected for them.

Table 7: Normality assumption check per feature per group. A value below 0.05 means that we
cannot reject the null hypothesis (e.g., it deviates from normality) and hence, should remove the

feature from the analysis.
Feature name Low Negative Positive Accepted

HR 0,72 0,51 0,58 Yes

SDNN 0,76 0,04 0,34 NO

RMSSD 0,62 0,44 0,77 Yes

SDNNRMSSD 0,15 0,96 0,69 Yes

HF 0,88 0,46 0,12 Yes

HFn 0,07 0,99 0,99 Yes

LF 0,04 0,92 0,87 NO

LFn 0,56 0,63 0,18 Yes

LnHF 0,02 0,99 0,9 NO

LFHF 0,89 0,76 0,09 Yes

MeanTonic 0,76 0,24 0,02 NO

SDTonic 0,45 0,79 0,17 Yes

19

http://www.plusme-h2020.eu


www.im-twin.eu

SkewTonic 0,72 0,36 0,34 Yes

KurtTonic 0,06 0,83 0,82 Yes

TFMean 0,58 0,45 0,08 Yes

TFSD 0,41 0,9 0,92 Yes

TFSkew 0,28 0,75 0,07 Yes

TFKurt 0,81 0,95 0,88 Yes

TFLF 0,44 0,79 0,06 Yes

TFHF 0,89 0,67 0,81 Yes

TFLFHF 0,07 0,74 0,09 Yes

TFLFn 0,08 0,69 0,09 Yes

TFHFn 0,95 0,46 0,07 Yes

TFSampEn 0,09 0,39 0,61 Yes

TFApEn 0,34 0,66 0,58 Yes

TFCD 0,38 0,94 0,39 Yes

As we said before, the multivariate assumption is checked after final feature selection. We first
proceed with the other MANOVA assumptions in univariate form.

3.1.3 Univariate assumption 3: Outliers
Like an ANOVA, a MANOVA expects no outliers. As observed in Figures 6, 7, and 8, there are a
few outliers present in the data. In one specific instance, child LT2_2 exhibited a heart rate of
130 BPM during a supposed low-arousal state. Since the state lasted only 30 seconds, and the
heart rate showed an increase relative to the baseline, we decided to exclude this data point
from the dataset. Other outliers, upon examination, were not found to be particularly outside of
the expected distribution and, as such, were retained in the dataset.

3.1.4 Univariate assumption 4: Homogeneity of variances
In a MANOVA, the univariate assumption of homogeneity of variances is extended to the
equality of the covariance matrices of all dependent variables. As mentioned before, we start by
checking the univariate assumption that the variances should be equal between the different
groups for each variable (i.e., a variable should have approximately the same variance across
all groups). The univariate assumption is assessed using Levene's test. A significant result on
Levene's test indicates that variances are heterogeneous among the different groups, and thus
the assumption is violated. Consequently, we need a p-value > 0.05 for all variables. Table 8
displays the results of Levene's test for all variables. Several variables should be excluded due
to their p-value < 0.05, indicating that the assumption of homogeneity of variances is not met for
these variables.
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Table 8: Testing for homogeneity of variances per feature across all four
groups using Levene’s test.

Feature name p-value Accepted

HR 0,82 Yes

RMSSD 0,4 Yes

SDNNRMSSD 0,02 NO

HF 0,5 Yes

HFn 0,53 Yes

LFn 0,27 Yes

LFHF 0,76 Yes

SDTonic 0,68 Yes

SkewTonic 0,35 Yes

KurtTonic 0,11 Yes

TFMean 0,53 Yes

TFSD 0,24 Yes

TFSkew 0,04 NO

TFKurt 0,33 Yes

TFLF 0,82 Yes

TFHF 0,12 Yes

TFLFHF 0,36 Yes

TFLFn 0,36 Yes

TFHFn 0,36 Yes

TFSampEn 0,26 Yes

TFApEn 0,48 Yes

TFCD 0,01 NO

After testing for normality and homogeneity of variances, 19 features remain available for further
analysis. From these remaining features, HR (Heart Rate), RMSSD (Root Mean Square of
Successive Differences), and SkewTonic are selected for the multivariate assumption tests in
the MANOVA. HR is selected because it reflects a fundamental aspect of arousal - elevation in
heart rate, which is typically associated with increased arousal. RMSSD is chosen due to its
known correlation with vagal tone [5]. Vagal tone, which is the activity of the vagus nerve,
increases when arousal is low [1]. Hence, a higher RMSSD value would indicate a more relaxed
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state. Lastly, SkewTonic is chosen as it has been identified as the best predictor of arousal
among all the tonic-related features in previous studies [13].

In this case, we perform univariate assumption tests on all features before choosing a final
selection of features. Assumption tests only check the validity of a test. As such, we do not get
information about their influence on the outcome variable or their effect on significance. As such,
it is ok to first do assumption checks before feature selection. Moreover, due to the small
datasets there is a high risk of a feature being excluded. If we would have chosen three features
first, we could have been at risk that one or two of the features could not be included in the
analysis. In that case, you have to determine other features and do a re-check or do the
analysis using only one or two features. As we have a very limited dataset, this would affect
statistical power tremendously. Hence, this would have been very unfavourable.

3.1.5 Multivariate assumption 1: Normality of multivariate distribution
After feature selection, the assumption of multivariate normality on the set of the three selected
features is checked using the Henze-Zirkler test [14]. Results are listed in Table 9. As all
p-values are higher than 0.05, multivariate normality can be assumed across all groups.

Table 9: P-values of the Henze-Zirkler test for multivariate normality. Across all groups,
the null-hypothesis can be rejected and, hence, multivariate normality can be assumed.

Low arousal Positive arousal Negative arousal Accepted

0.39 0.66 0.39 Yes

3.1.6 Multivariate assumption 2: Homogeneity of covariance matrices
Next, the multivariate assumption of equality of covariance matrices is checked using Box’s M
test. The null hypothesis (covariance matrices are not equal) is rejected if p>0.001 [15]. The
result (χ2(12)=28.8, p=0.0049) allowed us, therefore, to reject the null hypothesis and assume
equality of the covariance matrices. As such, the fourth and last assumption of the MANOVA is
met.

3.1.7 Results
All multivariate assumptions are met. Hence, we are allowed to proceed with the MANOVA on
the dynamically segmented dataset now containing 16 observations and 3 features. Figure 9
shows the distribution of the features across the three annotated affective states.
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Figure 9: Boxplots showing the distribution of the final feature selection across the three
annotated affective states and the reference baseline state.

Using a MANOVA without intercept and Pillai’s trace, there is a significant effect of affective
state on the HR, RMSSD, and EDA tonic skewness using the dynamic segmentation strategy, V
= 1.27, F(9,39) = 3.18, p = .006.

The statically segmented dataset meets the requirements for both the univariate and
multivariate assumptions, just like the dynamically segmented dataset. However, there are fewer
positive observations in the statically segmented dataset, with only four compared to eight in the
dynamically segmented dataset. The same three features (HR, RMSSD, and SkewTonic) were
chosen for the multivariate analysis, which yielded a dataset containing 12 observations and 3
features. In contrast to the dynamically segmented dataset, using a MANOVA without intercept
and Pillai’s trace, there was no a significant effect of affective state on the HR, RMSSD, and
EDA tonic skewness, V = 1.01, F(9,27) = 1.51, p > .05.

There are several possible explanations for this outcome. First, the reduced number of
observations in the statically segmented dataset (especially for the positive state) likely reduced
the power of the statistical analysis. Secondly, the static segmentation approach only considers
a 2-minute window of each state, centred around the middle of the state. When the states are
shorter than 2 minutes, the window often overlaps with other affective states, which may
introduce noise into the data and impact the analysis. Overall, these factors could have
contributed to the lack of significance in the results for the statically segmented dataset.

3.2 Follow-up analysis
Upon finding a significant omnibus MANOVA test result for the dynamically segmented dataset,
we decided to proceed with a subsequent analysis. While a typical approach would involve
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conducting multiple ANOVAs to assess the predictive power of each feature, we instead chose
to perform a discriminant analysis. Our goal was not to examine the explained variance of a
single feature, as no single feature has been identified that can simultaneously differentiate
between arousal and valence. Instead, we employed Linear Discriminant Analysis (LDA) to
investigate the combined effects of HR, RMSSD, and tonic skewness. However, due to the
small size of our dataset and the reliance of LDA on labels for its analysis, we also utilised
Principal Component Analysis (PCA), a dimensionality reduction technique that explores
underlying correlations without prior knowledge of the labels. Figure 10 presents the dataset
transformed using both PCA and LDA.

Figure 10: Three features (HR, RMSSD, and SkewTonic) of the dynamically segmented dataset
are analysed using PCA and LDA on their underlying correlations and their predictive power
with respect to the affective state. Where PCA maps HR and SkewTonic to the x and y-axis,
respectively, LDA uses the data’s labels to find the optimal separation of the data in a 2

dimensional plane. Surprisingly, LDA’s separation hints towards a near-perfect valence-arousal
separation.

The separation results of the PCA and LDA analyses, although impressive, have to be taken in
with caution. The dataset only features 16 data points making generalizability impossible to
assess. That said, both techniques can separate the datapoints very good. LDA’s dimensions
even seem to map on the theoretical valence and arousal axes and even without labels, PCA
finds tonic skewness and HR to be two perpendicular dimensions. Hence, despite the small
number of data points and the limited information about generalizability, this should be seen as
a first success.
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3.3 Classification
The promising separation achieved by PCA and LDA in the previous section prompted us to
assess the results using a classifier in a real-world study design. In this section, we'll conduct
LDA classification based on all data points extracted through dynamic segmentation. In other
words, we aim to estimate affect every 30 seconds and compare it to the annotated affect.
Accordingly, we will employ LDA to learn optimal separation from unaggregated data points. We
will use all four annotated classes since a patient is not expected to be in an affective state
100% of the time. Therefore, a real-world system should be capable of detecting the baseline
state as well. Additionally, we will include the repeated measurements for the positive states of
SL5_1 and LT1_1, as they no longer pose any analytical problems. Furthermore, to prevent
overfitting, we will divide the dataset into a training set and a test set. We will perform the split
based on participants, as this reflects real-world usage. In practice, the algorithm would be
trained/tuned on a fixed set of participants, and the system should maintain its performance
even when introduced to new, unseen children. To maximise the validity of our benchmark, we
will allocate 50% of the data for training (D1) and 50% for testing (D2). We will use a stratified,
grouped k-fold split with k=2 to ensure a balanced number of data points per affective state in
both the training and testing sets. Table 10 provides details of the splits and their associated
recordings.

Table 10: Train-test split of the full dataset based on participants. The number of data points per
affective state and their totals per set are listed. Stratified group splitting was used to balance

both sets based on the amount of data points per state.

Recording Baseline Low Positive Negative

D1 (training)

SL1_1 12 8 4

LT1_1 6 7

LT3_1 13 2 8

LT4_1 7 14 2

Total 38 9 30 6

D2 (testing)

SL5_1 3 1 9

SL7_1 9 5 3

LT2_1 13 3 8

25

http://www.plusme-h2020.eu


www.im-twin.eu

LT5_1 22 4 3

SL2_2 10 7

Total 57 4 33 6

We will conduct validation in two ways: first by training on dataset D1 and testing on D2, and
then by training on D2 and testing on D1. For both validation rounds, we will compute the
precision, recall, and F1-score. Given that the dataset is heavily unbalanced (with approximately
20 times more baseline points than low-aroused observations), we will primarily focus on the
F1-score, as relying on accuracy would give a biassed view. For instance, predicting only the
baseline state would be correct about 60% of the time, which would result in a misleading 60%
accuracy. The F1-score accounts for this imbalance. The classification results for both validation
rounds are presented as confusion matrices in Figure 11, while Table 11 reports the
performance metrics.

Figure 11: Confusion matrices of both validation folds. Once of the LDA trained on D1 and
tested on D2, and once trained on D2 and tested on D1.

Table 11: LDA’s precision, recall, and F1-score for each affective state in each fold.

Affective state Precision (%) Recall (%) F1-score (%) Support

Fold 1

Baseline 64.0 93.0 76.0 57 points

Low 0 0 0 4 points

Negative 0 0 0 6 points
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Positive 75.0 36.0 49.0 33 points

Subtotal 35.0 32.0 31.0

Fold 2

Baseline 60.0 87.0 71.0 38 points

Low 50.0 11.0 18.0 9 points

Negative 0 0 0 6 points

Positive 76.0 63.0 69.0 30 points

Subtotal 47.0 40.0 40.0

Total 41.0 36.0 35.5

Although an overall F1-score of 35.5% renders the system in its present form impractical for
real-world use, there are some encouraging findings. The second fold, which benefits from
greater patient diversity in the training data, yields superior results compared to the first fold,
particularly in classifying positive affect. While low and negative affective states receive minimal
support due to the imbalance of the data, the LDA classifier achieves respectable F1-scores for
both baseline and positive states. In fact, the classifier detects a positive state in 63% of
instances when a child is genuinely experiencing high arousal positive emotions. More
importantly, when the classifier identifies a positive state, it is accurate 76% of the time. This
level of precision is promising, as it bolsters the system's credibility; it is preferable to remain
uncertain and default to the baseline state rather than incorrectly identifying an affective state
when the child isn't experiencing it.

We employed a rigorous, though demanding, train-test split approach. In contrast to standard
procedures that randomly partition data with an 80-20 split, we implemented a 50-50
patient-based split. As a result, the variance between the train and test set is maximised to
closely reflect real-world conditions. Therefore, it is not surprising that the classifier achieves
modest average performance compared to other studies in the literature [16,17]. However,
these results are valid and highlight the unfortunate reality that current machine learning
techniques struggle to identify patterns associated with affective states in the IM-TWIN dataset.

4. Conclusion and future developments
In this study, we extracted 26 features from HR, HRV, and EDA data using two different
segmentation strategies. We then conducted an omnibus MANOVA test to assess the
learnability of the resulting dataset. During the univariate and multivariate assumption checking
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phase, seven features were excluded. Of the remaining 19 features, three were selected to
mitigate the curse of dimensionality, as the smallest groups had only four observations. The
MANOVA test showed significant results (p=.006) using the dynamic segmentation strategy and
the HR, RMSSD, and EDA tonic skewness features. As a result, we performed follow-up
analyses using PCA and LDA. LDA was highly successful in separating low, negative, and
positive arousal states, with the two dimensions found to map directly to the theoretical valence
and arousal dimensions. Because of this finding, an LDA classifier was built to assess the
validity of these results in IM-TWIN’s real-world application—predicting affective state every 30s
for new, unseen children. We split the dataset into test and train sets using a challenging 50-50
inter-patient stratified K-fold split, where K=2. Unfortunately, the classifier could not detect two of
the four affective states and only achieved a 35% F1-score. As a result, we conclude that
machine learning cannot extract meaningful patterns correlated to affective states using
IM-TWIN’s dataset in its current form.

Although the LDA classifier is impractical for real-world use, the significant MANOVA test and
successful LDA separation show the potential of IM-TWIN once the dataset quality is improved.
Specifically:

1. The number of observations should be increased by at least a factor of 5-10, especially
for the low and negative arousal states.

2. The dataset should be less skewed or large enough to address skewness through
undersampling.

3. The study design should follow a predefined, balanced order of stimuli to avoid
unnecessary data removal. Recordings should always begin with a baseline
measurement, and all recordings should capture at least 2 consecutive minutes of each
affective state.

4. Affective states should not be annotated in excessive detail. Although affective states
can affect facial expressions within seconds, biosignals like EDA adapt more slowly. The
difference between a 10-second positive arousal state followed by a baseline annotation
is likely negligible. Meeting requirement 3 would likely address this issue.

The main takeaway from this report is one of optimism and potential. Assessing children's
emotional responses using biosensors in noisy, ambulatory settings is challenging. Children are
constantly in motion—jumping, rolling, running—while sensors continuously track their
biosignals, trying to detect the microsecond changes in heart rhythm or the microsiemens
variations in skin conductance level. Despite the enormity of this challenge, we obtained a small
yet high-quality dataset through extensive preprocessing and achieved statistically significant
results, which is noteworthy. Future work should prioritise improving data collection, guided by
the recommendations outlined above. Nonetheless, the progress we've made should be viewed,
albeit cautiously, as the first glimmers of life for IM-TWIN.
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