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1. Overview of the deliverable
This deliverable contains the final version of the processing and feature extraction pipeline for
the biosignals and visual information. The core of the deliverable is sectioned as follows:

2. Processing of physiological signals, containing the subsections:
2.1. Signal Quality Indicator (SQI), describing the improvements made to the previous

SQI in order to lay a solid foundation for further processing.
2.2. ECG, describing the segmentation, peak extraction, and high-level feature

extraction of the ECG signal.
2.3. EDA, describing a wavelet-based denoising filter and presenting a novel

wavelet-based feature extraction technique to handle the severe noise bursts.
3. Processing of visual information, describing the Graphic User Interface (GUI) of the “eye

contact detector” software, developed to facilitate the use of the tool by the researchers
and the subsequent data analysis.

4. Processing of interaction between child, PlusMe and therapist, describing the software
improvement which allows the automatic synchronization of the two logs recorded by the
TWC toy (data about toy manipulation) and the camera glasses (data about eye contact
detection between child and therapist).

2. Processing of physiological signals
Processing the physiological signals from the IM-TWIN T-Shirt is inherently complex. As detailed
in previous reports, these signals are prone to distortion, and the frequent shifting of electrodes
can result in signal loss. Consequently, biosignal processing within the IM-TWIN ecosystem is
far from straightforward.

As the quality of the processing’s output is directly tied to the quality of the input data, a signal
quality indicator (SQI) was developed (refer to report D2.1). This indicator employs a binary
decision filter that screens out signals unsuitable for processing. Its role is crucial in the
processing pipeline, enhancing reliability and enabling the system to respond when it's unable to
infer an affective state. This is particularly vital in therapeutic or medical settings where using AI
requires caution [1]. In these contexts, a system that says it doesn’t know is preferred over a
system that hallucinates incorrect conclusions [2].

Mainly due to the SQI's essential function and feedback from CRI and CNR, we embarked on
an in-depth examination of its performance. By manually labeling signals from 8 recordings, we
created a ground truth dataset for comparing the output of the SQI. Based on these insights, we
formulated an improved version of the indicator: SQI v2.
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In this section, we will first discuss the previous SQI's performance and introduce its refined
version 2. Next, subsection 2.2 will outline the process of extracting various HR and HRV
features from the ElectroCardioGram (ECG) signal, which are known to correlate with affective
states. These features will form the basis for affective state classification, as described in report
D3.2. The section concludes with a section that delves into the quality and usability of the
ElectroDermal Activity (EDA) signal, the techniques developed to denoise the signal and the
methods used to extract meaningful features.

2.1 Signal Quality Indicator (SQI)
Traditionally, biosignals, whether obtained from clinically validated sensors or wearable devices,
are first processed by a preprocessing and feature extraction pipeline [3]. This is followed by a
classification pipeline, which transforms the extracted features into a final classification. Within
the context of the IM-TWIN system, this classification would correspond to one of three specific
affective states: low arousal, high positive arousal, and high negative arousal.

Some may contend that modern pipelines integrate both processes by employing deep learning
architectures capable of self-directed preprocessing and feature extraction [4]. Despite this
innovation, the essential function of this processing system remains unchanged: it takes
biosignals as input and produces a label belonging to a predetermined set of labels. In settings
where high-quality signals with minimal noise are assured, this system functions reasonably
well. The IM-TWIN system, however, does not conform to these ideal conditions. Consequently,
employing such a processing pipeline in the IM-TWIN context would lead to many false
positives and inconsistent behavior. This unreliability stems from the system's susceptibility to
various forms of noise and signal loss, hindering its effectiveness in an environment where
precision required.
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Figure 1: Adding a Signal Quality Indicator to the processing pipeline not only increases
accuracy, it also gives the system the ability to express ‘I don’t know’ whenever it cannot infer
affective state due to data loss or bad signal quality.

To address the challenges faced by the IM-TWIN system, we created a Signal Quality Indicator
(SQI). The primary purpose of the SQI was to provide therapists with clear, actionable feedback
on signal quality, enabling them to adjust the fitting of the T-Shirt as needed (refer to report
D2.1). Beyond this immediate application, the SQI introduced a significant addition to the
classification pipeline: the addition of a fourth output, essentially signaling "I don't know."
representing that the source data might be unprocessable due to its low quality (see Figure 1).
The ability of a system to articulate its uncertainty has been shown to enhance users' trust [5].
As a result, the SQI has become central to the reliability and trustworthiness of the entire
processing pipeline. However, its sequential nature also means that any error made by the SQI
inevitably translates into a subsequent mistake. Thus, the performance of the SQI is of utmost
importance.

Regrettably, the mask-based SQI as detailed in report D2.1 did not meet our expectations in
terms of accuracy. Moreover, further feedback from CRI and CNR prompted us to undertake a
more comprehensive examination of the SQI's performance.

It should be noted that the SQI only takes the ECG signal as input. This is a deliberate decision
as ECG is a more sensitive and faster responding biosignal than EDA. If good quality ECG can
be obtained, we can safely assume this to be the case for EDA as well. This assumption can be
further supported by the fact that the majority of the noise experienced in IM-TWIN comes from
large body movements and that the electrodes of both signals are placed very close to each
other. As such, movement artifacts in one signal are highly correlated to artifacts in the other
biosignal.
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2.1.1 SQI v1.0

To test the performance of the mask-based SQI we designed a quantitative, repeatable
benchmark experiment. First, a labeled dataset was generated by manually inspecting 8
recordings recorded by CRI in April 2023. To speed up labeling, a specially designed labeling
tool was used, called LabelStudio [6]. LabelStudio provides a user-friendly interface for the
labeling of various data types including time series (see Figure 2).

Figure 2: Label Studio was used to speed up manual quality labeling of the ECG records.
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Initially, we conducted a rough labeling pass using LabelStudio, focusing specifically on the
usability of the signal. We categorized consecutive regions of the signal as either 'good' or 'bad'.
Any instances of signal loss were automatically labeled as 'bad', and if a signal was too distorted
to extract QRS peaks, it was also deemed 'bad'. Conversely, when the signal was noisy but the
QRS peaks were still distinguishable from the background noise, we labeled it 'good'. Our aim
was not to attain a 'perfect' ECG signal. Instead, we concentrated on the feasibility of extracting
QRS peaks for HR and HRV analysis.

We then divided the labeled signal into 3650 two-second chunks, marking any chunk as ‘bad’
that was partly or entirely within a 'bad' region, and labeling the remaining as 'good'. The
labeling process then advanced to the first inspection round, where we used a custom tool that
enabled rapid and efficient examination of all 3650 labeled chunks. We displayed chunks and
their labels ten at a time, across 365 pages. The tool then allowed easy label modification
through visual interaction with the chunk. We repeated this correction procedure three times,
shuffling the order and taking at least one-hour breaks for refreshment. After three days, we
conducted a final inspection of the chunks to ensure maximum quality.

Subsequently, we applied the mask-based SQI to the same eight recordings, dividing its binary
output into 2-second chunks as well. We then compared the true and predicted labels for each
chunk, calculating the precision, recall, and F1-score (see Table 1). Precision assesses how
accurately the samples labeled as good or bad reflect their actual status, while recall measures
the number of correct samples retrieved by the classifier. The F1-score represents the harmonic
mean between these two measures. Additionally, we computed the confusion matrix (see Figure
3), providing further insight into the performance of our labeling approach.

Table 1: Performance metrics of the mask-based SQI (SQI v1) on a manually labeled testset
composed of 8 recordings.

Labels Precision (%) Recall (%) F1-score (%) Support

Good 86.5 64.1 73.6 1350 chunks

Bad 81.7 94.1 87.5 2300 chunks

Total 84.1 79.1 80.0
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Figure 3: Confusion matrix of the mask-based SQI (SQI v1)
on a manually labeled testset composed of 8 recordings.

The mask-based SQI achieves an F1-score of 80% on the manually labeled test set. This result
emerges from a combination of a 74% F1-score for the 'good' samples and an 88% F1-score for
the 'bad' quality samples. In essence, this outcome indicates that the classifier tends to be
somewhat 'too strict,' often categorizing 'good' samples as 'bad'. More precisely, the SQI fails to
retrieve 35% of the 'good' samples, meaning that a significant portion of data suitable for further
processing is discarded. Furthermore, of the remaining data, 15% is deemed unusable. This
segment contributes to false positives, thereby diminishing the overall reliability of the system.

In sum, while the mask-based SQI shows substantial effectiveness in identifying 'bad' quality
samples, its stringent criteria lead to an over-rejection of 'good' samples. This highlights a critical
area for potential improvement. Enhancing the SQI's accuracy could substantially improve the
accuracy and trustworthiness of the entire system.

2.1.2 SQI v2.0

The necessity for a more precise Signal Quality Indicator (SQI) is clear. However, designing a
high-quality SQI is a more complex task than it might appear at first glance. While human
experts can readily determine signal usability after minimal training, the same task becomes
exceedingly difficult for a computer, particularly when the signal is distorted to the point of it
being barely usable.

Our previous SQI often chose the side of caution, classifying samples around edge cases as
'not usable' to play it safe. Yet, we do not seek perfect ECGs; we merely need to detect peaks to
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extract HR and HRV, meaning that noise is acceptable to a certain degree. Determining this
exact level of acceptable noise is a hard for three main reasons:

1. Noise Source Difference: The sources of noise encountered with the IM-TWIN T-shirt
differ greatly from those found with wet, clinically validated electrodes. While clinical
ECGs often struggle with baseline wander and powerline interference, the IM-TWIN
system faces severe, short-burst distortions due to electrodes losing contact with the
skin.

2. Design-Correlated Noise: The specific noise we encounter is strongly tied to the design
of the IM-TWIN T-shirt, meaning standardized, pre-built SQIs are not compatible with our
data. In our previous version, we tried to solve this by targeting different noise types, but
issues like noises caused by electrode shift, which occupy the same frequency band as
the desired QRS peaks, proved challenging to detect.

3. Noise Tolerance: Our system permits more noise than most other ECG processing
systems, making off-the-shelf SQIs unsuitable due to their overly strict criteria.

To enhance the previous mask-based SQI, we adopted a radically different approach utilizing a
proven technique often applied to ECG classification tasks: the deep learning residual network
(ResNet) architecture [7]. Instead of relying on predefined heuristics, we trained the model by
showing it many examples of 'good' and 'bad' quality signal fragments. This method, first
introduced by Hannun et al. in Nature Medicine [8], has gained considerable attention for
various ECG classification tasks.

While Hannun et al.'s approach classified 8 different types of cardiac arrhythmia, we adapted it
for our purposes as a binary quality classifier, replacing the multi-class classification head with a
binary one. An overview of this innovative deep learning architecture is depicted in Figure 4.
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Figure 4: Adapted ResNet architecture as proposed by Hannun et al [8]
for assessing signal quality of 2-second ECG fragments.
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Hannun's ResNet architecture stands out for its remarkable improvement over traditional CNNs,
particularly when it comes to handling the learnability problem. Traditional CNNs tend to
struggle with learning when they reach 10 or 20 layers. ResNet, however, addresses this by
incorporating skip connections (represented as MaxPool blocks in Figure 4) [7]. These
connections facilitate data flow even when hundreds of layers are involved, enabling ResNet to
detect smaller, more subtle details in the data. This leads to a significant performance boost for
tasks requiring nuanced understanding. Although other deep learning techniques for time series
classification have been developed (e.g., transformers [9], autoencoders [10]), the ResNet
architecture is ideal for our specific needs. In a temporal sense, we have very short samples of
only 2 seconds. Hence, we don't require classification over extensive temporal distances.
However, these 2 second chunks each contain a 1000 data points in which we search for three
or four spikes of which we don’t know the actual shape. As such, we need a network capable of
learning these intricate differences between time series. For this, the ResNet model is perfect.

The data processing follows the previously described procedure. Segmented into 2-second
chunks, the data provides enough information to span 3 or 4 heartbeats while remaining short
enough to maintain near-real-time performance. We then divided the chunks, designating 50%
for training and the remaining 50% for testing. Training was executed using the Adam optimizer
[11] with a learning rate of 0.001 and a "reduce-on-plateau" learning schedule, which reduces
the learning rate by a factor of 10 if the validation loss doesn't decrease for two consecutive
epochs. Table 2 and Figure 5 show the performance of the improved SQI, displaying the
confusion matrix along with the precision, recall, and F1 score for the portion of the dataset set
aside for testing.

Table 2: Performance metrics of the ResNet-based SQI (SQI v2) on a manually labeled testset
composed of 8 recordings.

Labels Precision (%) Recall (%) F1-score (%) Support

Good 93.5 95.5 94.5 651 chunks

Bad 97.5 96.3 96.9 1174 chunks

Total 95.5 95.9 95.7
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Figure 5: Confusion matrix of the ResNet-based SQI (SQI v2)
on a manually labeled testset composed of 8 recordings.

The newly developed SQI exhibits a significant improvement in F1-score of 95.7%, marking an
approximately 15% improvement over the previous version. This result proves ResNet's ability
to learn the tiny variances found in our data. The most notable improvement is reflected in the
recall score for samples labeled as 'good.' Whereas the former SQI overlooked 35% of the
'good' samples, the updated SQI misses only 4.5%—a seven-fold improvement. Furthermore,
this enhancement in recall does not come at the expense of precision, meaning that the update
genuinely advances upon the prior SQI. Figure 6 illustrates two segments that were challenging
for SQI v1 to differentiate due to their nearly identical frequency spectrum. Nevertheless, the
upper segment reveals the presence of three QRS-shaped peaks, permitting the extraction of
HR and HRV features, while the lower segment displays only one peak.

Good Bad

Figure 6: A ‘good’ quality (left) and ‘bad’ quality (right) segment showing the difficulty in
distinguishing usable from unusable ECG. Both samples have sharp peak-like features that
would be hard to distinguish based on a frequency spectrum alone. At the same time, a
matching filter would be too strict as the QRS peaks are sometimes severely distorted.
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2.2 ECG
Following an inspection of signal quality, the signal processing pipeline splits into two branches;
one focuses on the ECG signal, and the other on the ElectroDermal Activity (EDA) signal. In this
segment, we describe the ECG signal's segmentation, the extraction of its peaks, and the
calculation of several heart rate (HR) and heart rate variability (HRV) features. The EDA
processing branch will be described in Section 2.3.

2.2.1 ECG preprocessing
The IM-TWIN system's essential capability is to conduct real-time analyses. Biosignals must be
processed fast and affective state classification must occur near instantaneously. Regrettably,
numerous ECG features that correlate with the autonomic nervous system's state, and therefore
the child's affective state, cannot be calculated instantaneously [12]. Often, they need a
distribution of interbeat intervals (IBIs) (e.g., the time between two successive heartbeats) of at
least 2-5 minutes of high-quality ECG data [13]. Thus, ECG features more or less provide an
averaged depiction of one's biosignals over the past 2-5 minutes. Instantaneous ECG features
are unfeasible. Fortunately, Laborde et al. [24] suggested shorter time windows for time-domain
HRV metrics. Munoz et al. even claimed that 2-minute windows were unnecessary and that near
perfect results could be obtained using 30s windows. However, frequency-based HRV metrics
still need at least 1-2 minutes of ECG to make accurate frequency estimations. Therefore, we
opted to segment the ECG using two windows; a 30s window for time-based HRV and a 120s
window for frequency-based HRV. The 120s window had a 30s stride to match the output of the
30s window (see Figure 7).

Upon segmentation, the window's signal quality is examined. Short periods of noise are
tolerable as they have minimal effect on the overall feature extraction. Nevertheless, this
tolerance has a limit. Eventually, there is too little data for a trustworthy estimate. Therefore, we
establish a threshold of a minimum 80% high-quality ECG data in each window. If this ratio falls
below 80%, the system ceases making affective state predictions and defaults to an 'I don't
know' status until the quality is reestablished. A threshold of at least 80% high-quality data is
chosen to balance the quality and quantity of output. A threshold too high would result in many
undesirable ‘I don’t know’ states. However, a threshold set too low endangers the system’s
credibility. Figure 8 illustrates the quality assessment in operation.

14

http://www.plusme-h2020.eu


www.im-twin.eu

Figure 7: ECG is analyzed using a 30s window and a 120-second trailing window having a
stride length of 30 seconds for time and frequency-based HRV metrics, respectively. The
window trails analysis instead of surrounding the analysis. The latter would require looking into
the future which would impair real-time analysis.
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Figure 8: Major steps in the ECG processing pipeline. First, the signal is segmented.
Subsequently, quality is assessed by the SQI. If more than 80% of the segment contains good
data, peaks are extracted. Finally, peaks are marked unreliable if they reside in bad quality
signal regions. Peaks marked reliable are used for further feature extraction.
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2.3.2 ECG feature extraction
When a window fulfills the quality criteria, the processing pipeline advances to peak extraction.
Over time, many ECG peak detectors have been developed, with a famous one developed by
Pan and Tompkins [14] standing as one of the most favored today. Created in 1985, this
detector demonstrates remarkable reliability in clinical environments. However, the IM-TWIN
signals are noisy. Even after quality evaluation, the ECG signal might still include substantial
noise bursts. As detailed in report D3.1, the Pan and Tompkins detector tends to become
unreliable when confronted with noisy ECG signals. This is a significant issue, as many HRV
features are extremely sensitive to errors in peak detection [15]. A single incorrect peak can
influence the feature extraction across the entire 2-minute window.

To mitigate the risk of such errors, we utilized a recently validated machine learning-based
method. This approach, developed by Zahid et al. [16], leverages a deep Convolutional Neural
Network (CNN) trained on extensive hours of noisy Holter recordings, such as wearable ECGs.
By employing Zahid et al.’s peak detector in combination with our precise SQI, we created a
highly resilient peak detection pipeline. It's well-equipped to manage the often unexpected and
severe bursts of ECG noise that are common in the IM-TWIN system. Figure 8 visually captures
both systems at work.
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Figure 9: ECG feature extraction for a single recording. Top: Raw ECG signal, the extracted
QRS peaks with their quality shown as blue or red points and the child’s affective states as
annotated by the therapists. Regions of bad quality are also visualized by a red bar. Second,
third and fourth from top: Average heart rate based on the extracted QRS peaks. SDNN and
RMSSD, two commonly used HRV metrics, calculated from the interbeat intervals of the QRS
peaks. Bottom two plots: HRV frequency metrics known to correlate with vagal tone (resting
state).

In the final processing step of the ECG processing pipeline, we remove outliers, interpolate and
extract HR and HRV features. Suspicious long heart beat intervals are removed using the
maximum percentage change rule [25]. An interbeat interval is allowed to differ at most 30%
from the mean of the last four intervals. Subsequently, gaps smaller than 3 seconds are
interpolated using linear interpolation and the filling technique described by [26]. Lastly, HR and
HRV features are extracted. Figure 9 shows average HR and two commonly used metrics for
HRV, the standard deviation of subsequent normal-normal peak intervals (SDNN) and the Root
Mean Square of Successive Differences (RMSSD) [13]. You should keep in mind that features
are calculated based on the last 120 seconds of ECG data. As such, Figure 9 does not show
HR or HRV features for the first 120 seconds of data. Figure 9 also shows the considerable
impact of noisy ECG measurements around t=800s. A single error shifts both HRV metrics
significantly for the duration of an entire window (120s).
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As the selection of HR and HRV features is highly task dependent, we discuss this in more
detail in report D3.1: Personalized affect classification and feedback.

2.3 EDA
In addition to the ElectroCardioGram (ECG) signal, the IM-TWIN T-Shirt also records
ElectroDermal Activity (EDA) with two electrodes placed on the back of the child. EDA
measures the skin's conductivity, reflecting the activity of sweat glands [17]. As the sweat gland
activity is influenced directly by the sympathetic nervous system [12], EDA is often used as a
non-invasive measure of a person's physical arousal level [18]; a quality that makes EDA
critically essential to the IM-TWIN system.

The extraction of high-quality features from the EDA signals collected by the IM-TWIN system
using traditional techniques was anticipated to be challenging (refer to report D3.1). The report
determined that novel strategies needed to be formulated to manage the intense noise bursts
observed in the ECG signal, and believed to exist in the EDA signal as well. In this part of the
report, we begin by illustrating the EDA signal as captured by the T-Shirt, contrasting it with
clinically obtained EDA (e.g., EDA measured from the fingers or palms using wet, adhesive
electrodes). We then demonstrate the performance of standard preprocessing methods and
explain why they fall short for IM-TWIN. We conclude by presenting the use of an adaptive
wavelet-based denoising method and a novel time-frequency technique. These innovations
enable us to derive meaningful features from severely distorted EDA signals.

2.3.1 EDA of IM-TWIN
Typically, EDA signals are divided into their tonic and phasic components prior to feature
extraction [17]. This division is grounded in the understanding that the EDA signal consists of a
superposition of two elements: a slow-varying, large-amplitude conductance level (the skin
conductance level (SCL)), and quicker varying, small-amplitude skin conductance responses
(SCRs). These two components are distinguishable by frequency, as each reside in a unique
frequency band [20]. Figure 10 illustrates this decomposition for a standard EDA signal.
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Figure 10: Typical EDA signal and its decomposition into the tonic and phasic components.

The EDA signal obtained by the IM-TWIN T-Shirt is significantly different from this ideal
example. Figure 11 shows a 2 minute EDA signal from a high-quality recording. Note, the
recording already passed the SQI meaning there was a proper T-Shirt fit and all electrodes had
contact with the skin.

Figure 11: EDA signal as recorded by the electrodes on the back of the IM-TWIN T-Shirt. The
selected interval passed the ECG-based quality inspection by the SQI. The differences between
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typical EDA and this signal are striking. Where typical EDA is slow moving, the EDA from
IM-TWIN shows many rapidly changing, high-frequency components.

The discrepancies between the clinically acquired EDA recording and the one acquired through
the IM-TWIN T-Shirt are striking. EDA is generally considered a 'slow' signal, with most of its
power situated within the slowly varying [0.05-0.5] Hz frequency range [12]. It's also considered
slow in responding to external stimuli. While heart rate may react within seconds, EDA can take
up to ten times longer to manifest a response [3]. However, the EDA in IM-TWIN reveals
fluctuations at much finer time scales (e.g., higher frequencies). Unlike typical EDA,
characterized by quick increases and slow decreases, our EDA does not display this behavior.
In some instances, there are even rapid oscillations that are highly uncommon for skin
conductance [17]. In reality, such oscillations are more typical in high-frequency recordings of
muscle activity (EMG). An explanation for this behavior might lie in the fact that IM-TWIN
measures EDA at the child's back, a location that is generally not free from EMG interference.
The activity of the back muscles or the tensioning of the back muscles due to breathing could
generate the high-frequency EMG interference observed in the recordings.

2.3.2 EDA preprocessing
Because IM-TWIN’s EDA signal suffers significantly from noise caused by activity of the
muscles (EMG) surrounding the EDA electrodes, the signal needs to be cleaned before further
processing can happen. Unfortunately, removing EMG noise from EDA is not as trivial as just
applying a low-pass Butterworth filter as is often done in EDA preprocessing [19]. Figure 12
shows that the large EMG spikes are only ‘rounded-off’. They cannot be removed as their power
is smeared over a wide frequency band. As a consequence, their frequency spectrum overlaps
that of EDA. Due to this effect, the peaks are very hard to remove using static frequency filters
alone.
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Figure 12: EDA as recorded by the IM-TWIN T-Shirt in its raw and filtered form. The raw EDA
was filtered using a 4-th order low-pass Butterworth filter having a cutoff frequency of 3 Hz.
Clearly, the low-pass filter is not capable of removing the high-amplitude spikes as their power is
smeared over a large frequency band.

As such, we address the problem from a different angle. Rather than employing a single coarse
low-pass filter that eliminates the entire frequency spectrum above a specific frequency (e.g.,
cutoff frequency), we opt for multiple bandpass filters where each filter aims to identify a
particular power threshold. This technique, inspired by [19], leverages this adaptive power
threshold to remove strong frequency components atypical in EDA signals. The EDA signal is
then reconstructed using the filtered frequency components.

In our processing pipeline, the multiple bandpass filters are realized through a Stationary
Wavelet Transform (SWT) [21], a method akin to the Discrete Wavelet Transform (DWT) [22].
Both SWT and DWT utilize cascades of bandpass filters to break down a signal into short atoms
known as 'wavelets’ that are localized in time and frequency. DWTs are streamlined for speed
and crafted for mathematical perfection in reconstruction (e.g., no redundancy) [22]. Therefore,
they only use frequencies that are powers of 2 to dissect a signal, and the signal is
downsampled by a factor of 2 following each wavelet transformation. This dyadic process of
decomposition is well-suited for compression, but less effective for processing as it distorts the
time-domain [23]. The SWT addresses this by preserving the signal length after each wavelet,
while utilizing a dyadic frequency scale. Figure 13 illustrates the SWT decomposition of an EDA
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signal into four levels using the Haar wavelet. Note that the dyadic frequency scale ensures
there is no overlap between the different levels.

Figure 13: The raw EDA signal and its wavelet coefficient components at level 1-4. Top right:
The distribution of coefficient values at level 4. Bottom right: QQ-plot of the same distribution
showing a clear deviance from normality at 2 SD’s from the mean or above a value of 5.

An important characteristic of the EDA signal is that power is normally distributed across each
frequency band [19]. In other words, all wavelet coefficients at a given level follow a normal
distribution. Figure 13 illustrates this effect for the wavelet coefficients of level 4. Since we
expect the coefficients to conform to a normal distribution, high-amplitude noise can be readily
identified as statistical outliers (as seen in the QQ plot of Figure 13). Within the [-2,2] quantile
range, the distribution adheres to the QQ-line. However, outside this region it deviates
significantly. Utilizing this method, we can establish a threshold for each wavelet level, to
confidently mark wavelet coefficients as noise or signal.

However, setting the threshold solely based on the QQ-plot would not be fully correct. A more
precise representation of the wavelet coefficients in an EDA signal involves the superposition of
two Gaussian distributions [19]. One that resembles the changes in SCL having a large
variance, while the other represents the SCR, characterized by a smaller variance but a higher
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peak. To sustain unit normalization (e.g., ensuring the area under the curve equals 1), the two
distributions are scaled by variables g and (1−g), respectively. Additionally, the second
Gaussian's standard deviation equals the first Gaussian's standard deviation, multiplied by a
factor c. The function can be described as follows:

,

where g, s and c are variables that are used to fit f(x) to the wavelet coefficient distribution. The
function is fitted to each wavelet level individually. Subsequently, the cumulative probability
density function (CDF) is computed, facilitating the identification of thresholds d and −d,
between which (1−p) percent of the data samples fall. The value for p is empirically set to 0.01,
meaning that the minimum and maximum 0.5% of the data is considered as noise.

Figure 15: A superposition of two Gaussian functions is fitted to each wavelet coefficient
distribution. Subsequently, the Cumulative Probability Densitiy (CDF) function is calculated
using integration. This allows us to retrieve the threshold d for which 99% of the data lies
between [-d,d]. Noise is marked as data samples falling outside this range.

Wavelet coefficients that fall outside the [-d,d] region are set to zero. This process repeats for all
wavelet levels between [0.05-1.0] Hz. Because the majority of EDA’s phasic power lies in the
[0.05-1.0] Hz range [20], wavelet coefficients in levels above 1 Hz are most likely to be noise
and are, hence, set to zero. Similarly, wavelet coefficients in the levels below 0.05 Hz belong to
the tonic component and are not filtered. The result is a selectively low-pass filtered EDA signal
(see Figure 16).
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Figure 16: Raw and Wavelet filtered EDA signal. In contrast to the Butterworth approach in
Figure 12, the Wavelet filtering approach achieves much better results due to its selective
filtering in the EDA frequency band.

Figure 16 illustrates the enhanced ability of the by Tronstad et al. [19] inspired adaptive wavelet
filter to eliminate high-amplitude EMG noise, particularly when compared to the low-pass
Butterworth filter. The bottom plot of Figure 16 also reveals the filter's capability in eradicating
excessive low-frequency baseline wander, while still effectively discerning the skin conductance
level at the start of the recording. Consequently, the proposed wavelet filter genuinely enhances
signal quality, laying a solid foundation for subsequent processing.

2.3.3 EDA feature extraction
Following the filtering, we continue with the feature extraction phase, starting by dividing the
EDA into its phasic and tonic components. The enhanced signal quality markedly improves
usability of the phasic component and visibly betters the tonic component as well. Figure 17
shows an example of the separation of the phasic and tonic elements of a wavelet-filtered EDA
signal.
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Figure 17: The first step in EDA feature extraction is the separation of the phasic and tonic
components. The plot shows the separation for both the raw and wavelet filtered EDA signals.
The phasic component is especially improved by the wavelet filter.

The tonic component can be utilized without additional processing. Analogous to the ECG
feature extraction method, the tonic signal can be segmented using a trailing 120-second
window. From there, moment-based features such as the mean, standard deviation, skewness,
and kurtosis of the signal can be extracted.

The phasic component, however, presents more of a challenge. Normally, phasic analysis would
start with peak detection [12]. These peaks, representing specific or nonspecific skin
conductance responses (S-SCRs or NS-SCRs), would then be analyzed for attributes like
height, duration, halftime, etc [17]. Unfortunately, even after wavelet denoising, the EDA signal
remains substantially saturated in the [0.04-0.4] Hz region; the band where NS-SCRs are found
(see Figure 17). Consequently, traditional threshold-based peak detection algorithms are
unsuitable (see Figure 18), as the noise causes the signal to surpass the threshold for peak
detection far more frequently than would be the case with a clean EDA.
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Figure 18: An example EDA signal with and without White Gaussian Noise (WGN) added. In
both cases, the EDA is decomposed into its phasic and tonic components. The phasic
component is searched for peaks to extract NS-SCRs. The added noise distorts this process
severely.

To solve this problem, we propose a feature based on the wavelet transformation. While we
utilized the Stationary Wavelet Transform (SWT) for signal decomposition and reconstruction,
we employ a different variant for feature extraction – the Continuous Wavelet Transform (CWT).
Extensively detailed in report D2.2, we leverage our fast implementation of the CWT, referred to
as fCWT [23], to compute a comprehensive time-frequency representation.

Inspired by previous research [20], we then extract the mean frequency power within the range
of 0.04 to 0.4 Hz over time. This resulting feature, termed 'TF mean', is subsequently
segmented using the trailing window technique, a method we also applied for HR, HRV, and
tonic feature extraction.

Figure 18 illustrates both the TF mean and a conventional phasic peak-based feature, known as
the SCR count, which measures the number of peaks within a particular time frame. The high
correlation between these two features validates the use of TF mean as a phasic feature. As
noise is automatically mitigated by the wavelet transform [23], the approach manages to
effectively represent the phasic behavior of the EDA signal, even in the presence of significant
noise.
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Figure 19: We designed a time-frequency based feature to describe phasic activity in noisy EDA
signals. In this figure we compare the mean power in a [0.045-0.4] Hz frequency band to a
renowned phasic feature; the number of peaks in a certain time-frame, SCR count.

To demonstrate the reliability of the newly developed feature, we conducted an experiment to
test its resilience to noise in comparison to the traditional SCR count feature. We progressively
contaminated a clean EDA with noise. Subsequently, we calculated the correlation between the
feature extracted from both the clean and noisy EDA signals at each noise level, and plotted the
result in Figure 20.

As anticipated, the peak-based SCR count showed significant deterioration at noise levels even
as low as 24dB. In contrast, the TF mean feature exhibited robustness, maintaining decent
correlation even at 12dB noise level. As such, the TF mean feature shows promise to be applied
in the IM-TWIN system.
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Figure 20: Noise-resilience plotted as the correlation between a feature extracted from the clean
and noisy signal for different levels of added noise. As expected, the SCR count feature is
severely impacted even by low levels of noise as it relies on fixed threshold peak extraction.

Together with the tonic component, the TF mean feature extracted from the phasic component
is segmented into 120s trailing windows. Next, the signals are described by statistical
moment-based features such as the mean, standard deviation, skewness and kurtosis.
Additionally, other features based on information theory such as approximate or sample entropy
could be extracted. See report D3.2 for specific information about the final stage of feature
extraction and classification.

3. Processing of visual information
In the previous work (see deliverables D2.1 and D3.3), CNR-ISTC described a Python1

implementation of a software, designed to detect the eye contact between child and therapist.
The “eye contact detector tool” processes the video recorded through camera glasses worn by2

2 See video https://im-twin.eu/video/#eye_contact_detector

1 D2.1 Processing of physiological signals, visual information, and PlusMe interaction: first version, and
D3.3 “Plusme AI-augmente behavior and IM-TWIN 1”, available at https://im-twin.eu/deliverables/
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the caregiver during a play session with the child, and produces as output a log file scoring the
number of eye contact events (see Figure 21).

Figure 21: a pilot test run at SAPIENZA, where the “Eye contact detector tool”
was used to detect the eye contact events between child and therapist.

In order to make this tool more accessible and usable by non-expert experimenters, CNR-ISTC
implemented a Graphic User Interface (GUI) to manage the software. Through the GUI the user
can upload a video, previously captured by the camera glasses during the experimental
session, select the main parameters relevant for the analysis, and process the data.

A video about the application is available in the project website, at the following link:
https://im-twin.eu/video/#linux_app_eye_contact_detector.
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Figure 22: the GUI of the “Eye contact detector tool”.

In detail, the GUI (see Figure 22) allows the user to:

● select the threshold for eye contact detection. This is a percentage which determines the
accuracy of the classifier (which relies on a recent computer vision algorithm by Chong
and colleagues ). Three values are available: 70%, 80%, 90%. In the current pilot tests3

at SAPIENZA, the value 80% is used, as it provides the most reliable results when
compared with the response of a human rater (Inter Rater Reliability, k≂0.80).

● select the video source: “Recorded Videos” or “Webcam”. In case the “Recorded Video”
button is pressed, a popup window shows up asking the user to select the file to

3 Chong, E., Clark-Whitney, E., Southerland, A. et al. Detection of eye contact with deep neural networks is as
accurate as human experts. Nat Commun 11, 6386 (2020), https://doi.org/10.1038/s41467-020-19712-x
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process. In case the “Webcam” button is pressed, the popup window asks the user to
verify the USB camera connection. This option can be used for debug purposes, and it
allows to check the performance of the application in real time.

When the video source is selected, the script of the application loads the model weights and the
processing of video begins (Figure 23).

Figure 23: during the processing, the application provides the user with
feedback about the performance of the eye contact classifier (in this example,
also the output of the Facial Expression Recognition classifier is reported).

During the processing, the application provides the user with an immediate feedback about the
performance of the eye contact classifier, by streaming the original video and overlaying on the
image the detected face frame, the eye contact response (“Look” / “No Look”), and the
confidence percentage; moreover, a countdown label informs the user about the estimated time
until the end of processing .4

Once the processing is terminated, the application creates a folder containing 2 files which
report the classifier outputs:

● a txt file: this is a log file where, for each frame, is provided the response (0 or 1) of the
eye contact classifier, according to the threshold accuracy selected;

4 The speed of processing depends on the video resolution: 640*480 is processed quite in real-time
(about 24 fps), while 1980x1080 is processed at about 1 fps.
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● an mp4 file: this is the feedback video shown to the user during the processing. The
video is useful for debug purposes, when the user wants to compare the classifier
performance with the results in the txt log file.

It is important to underline that the frame rate of the video input is always downsampled at 205

fps before the processing, so that the related log file presents 20 readings per second. This
resampling is necessary in order to make the sampling rate of the application compliant with the
sampling rate of the TWC toys, which collect data at 20 Hz. The reason for this compliance is
explained in the next section 4 “Processing of interaction between child, PlusMe and therapist”.

Although the primary purpose of the application is to assess the eye-contact, the GUI also
allows the user to include in the visual processing, as an additional – still experimental – feature,
the classification of the Facial Expression Recognition (FER). This processing was part of the
original IM-TWIN research plan but, as shown in a previous deliverable D2.1 , the FER module6

performed poorly in the real scenario with children, and was temporarily set aside. To overcome
this limitation, CNR-ISTC reimplemented then the FER algorithm, using the POSTER++ model,
recently published by MAO et al. in 2023 ; this is an improvement of the previous version of the7

POSTER model, which achieves the state-of-the-art performance in FER, but featuring an
undoubtedly complex architecture and requiring expensive computational costs. The new model
POSTER++, with the minimum computational cost, reaches an overall accuracy of 92.21% on
RAF-DB , a reference dataset for face expressions (see Figure 24).8

Figure 24: the performance of POSTER++ model in facial expression recognition task.

To test the new model, the GUI of the application (see Figure 22) allows the user to activate,
along with the eye-contact detection, the FER processing, also selecting the accuracy threshold.
In this case the application outputs (the txt log file and the mp4 video file) also report the FER
results (see Figure 23).

8 See http://www.whdeng.cn/raf/model1.html for further information.

7 J. Mao, R. Xu, X. Yin, Y. Chang, B. Nie, A. Huang, POSTER++: A simpler and stronger facial expression
recognition network (2023), https://arxiv.org/abs/2301.12149

6 D2.1 Processing of physiological signals, visual information, and PlusMe interaction: first version,
available at https://im-twin.eu/deliverables/

5 Standard cameras generally provide a video recording of 30 or 25 fps.
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The FER performance with ASD children is currently in evaluation, during the experimental
sessions run at SAPIENZA facility.

As next step, to facilitate access and use of the GUI by researchers, the CNR-ISTC plans to
embed the software in a Linux AppImage : this is a kind of single, executable file for Linux9

systems, which contains all the dependencies to run the application as a stand-alone
component. The AppImage, after IPR evaluation, could be made freely available in the project
GitHub page: https://github.com/IM-TWIN.

4. Processing of interaction between child
PlusMe and therapist
In the previous work CNR-ISTC described the first implementation of the TWC software to10

collect the data about the physical manipulation of the toy – Octopus X-8, in the feasibility test –
by the child. In detail, the software showed how the combination of data provided by a TWC and
the camera glasses worn by the therapist, can provide interesting information about the child’s
social behavior during the play activities (see Figure 25).

Figure 25: schema for data integration, combining the input from the
sensorised glasses and the TWC toy (adapted from previous deliverable 2.1).

In detail, as shown in Figure 26, both tools provide a log file :11

11 A video of the X-8 data collection capabilities, including the sensorised glasses, is available at the
project webpage link https://im-twin.eu/video/#x8_functional_features.

10 D2.1 Processing of physiological signals, visual information, and PlusMe interaction: first version,
available at https://im-twin.eu/deliverables/

9 See https://appimage.org/ for further details.
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● the camera glasses produces a log file (sampling rate: 20 Hz) with the evaluation of eye
contact between child and therapist;

● the Octopus X-8 – the TWC used in the feasibility test – produces a log file (sampling
rate: 20 Hz) with several data such as:

○ status of the X-8 tentacles activations (touched / not touched), including the
identity of the user who touches the toy (child / caregiver);

○ triggering of toy sensory reward (lights and sounds), including the type of reward;

○ type of game, currently selected by the caregiver (in X-8, 3 different games with
increasing complexity are available, while Panda PlusMe presents 6 games);

○ if the rule of the selected game requires a turn, the specification of the game
round (e.g.: 0: game with no turn; 1: child’s turn; 2: caregiver’s turn).

Figure 26: the 2 logs recorded by the camera glasses and the TWC Octopus X-8. The
integrated data provides interesting information about the social interaction between child and
therapist. In this example the logs have been synchronized by hands.
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Figure 27: the TWC device produces a brief light pattern when the recording of data log starts
or stops. This signal is necessary to sync the log file with the video recording of the sessions.

It is important to note that the fact that the two devices are activated independently at different
points in time can cause possible synchronization issues. In other words, once the logs are
available at the end of the session, the researcher has still to sync by hand the two files, so that
the recorded events collected by the TWC log temporally match with those collected by the
camera glasses log. This manual task, can be tricky for the following reasons:

● the operation requires a software for video editing and the competence for using it.
Through the software, the researcher has to pair the videos from the environmental
camera and the camera glasses, and synchronize them. This is done exploiting the
“sync” light pattern, namely a brief light signal (about 1 second) produced by the toy
when the log session starts / stops (see figure 27). This visual mark is used as a “clapper
board” to pair the videos from both cameras;

● if the therapist wearing the camera glasses misses the TWC synch light signal , the12

pairing of videos can become even more difficult.

In order to overcome these possible obstacles (which could prevent the actual use of the tool by
researchers), CNR-ISTC started to develop a new implementation of the camera glasses. In
more detail, the original cam embedded in the glasses has been substituted with the “Camera13

sensor module “XIAO ESP32S3 Sense” . This module supports 2.4 GHz WiFi and BLE dual14

14

https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html?queryID=c81515975f93149921afaa55
48ee8b43&objectID=5639&indexName=bazaar_retailer_products

13 endoscope camera module, model “CMT-8MP-IMX179-W510 USB”, by http://camera-module.com/
12 This can happen if the therapist is not looking at the TWC when the synch light is produced.
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wireless communication, while the camera provides a 1600 x 1200 resolution, with a 68.7° field
of view (see Figure 28).

Figure 28: the camera sensor module XIAO ESP32S3 Sense.

This module features a very interesting attribute for the IM-TWIN system components: it is
based on the ESP32 board, the same microcontroller used in the Panda PlusMe and Octopus
X-8. This allows the TWC Android app to control both the selected toy and the camera module
embedded in the camera glasses (see Figure 29), and to manage the automatic synchronization
of the TWC log file and camera recording, by making the two processes start at the same time.

Figure 29: the improved mobile Android app can now control both the
TWC toy and the camera module embedded in the camera glasses.
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From a technical point of view, this is achieved by ensuring that all devices are properly
configured according to the Bluetooth Low Energy protocol (BLE). BLE devices operate in two
primary roles, peripheral and central. Peripherals broadcast data or services, while centrals
scan for and connect to these peripherals. One peripheral can connect to several centrals
concurrently; one central can connect to only one peripheral. In our case the mobile Android
application is configured as a peripheral while the TWC and camera module are configured as
centrals (see Figure 30).
The TWC application was then modified as follows:

● a new “Camera” button has been added in the GUI (see Figure 29). The button checks if
the camera module is available; this happens when the new camera glasses – now
based on ESP32 – are activated and within the bluetooth working range;

● if the camera module is found, the application connects to it and the camera button turns
blue, indicating that a connection has been established;

● when the researcher presses the “Start Log” button to start the TWC data collection (see
Figure 26), the application sends a command to the camera module, which starts the
video recording; conversely, when the researcher stops the TWC log file, the command
also stops the video recording. As a consequence the TWC log file “matches” temporally
with the video collected by the camera glasses.

This hardware/software improvement simplifies the procedure of data collection and analysis,
which can be summarized in the following steps:

● once the experimental session is terminated, the researcher saves the data log
produced by the TWC;

● the researcher then processes the video recorded by the camera glasses, using the GUI
of the “eye contact detector tool”, described in the previous section 3 “Processing of
visual information”. The processing produce the second data log, concerning the eye
contact between child and researcher;

● the researcher, using a standard statistical tool (e.g. “R”), can join the two logs, with no
longer need to pre process the visual data through a video editor. Both logs now report
the same events, temporally paired, sampled at 20 Hz.
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Fig. 30: UML Activity Diagram showing how the log file on the TWC and the video recording
from the camera module, synchronize when the camera start log button is pressed.
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5. Conclusion and future developments
In the current study, we have introduced a processing pipeline tailored for the IM-TWIN system,
designed to filter out extraneous variance in both physiological and video signal data. As this
approach reduces extraneous variability, it allows for the deployment of simpler, more
streamlined models during the classification phase, detailed further in Report D3.2.

Looking forward, there are opportunities to evolve the physiological processing pipeline towards
real-time operation. Given that the existing system already demonstrates computational
efficiency, the primary obstacle lies in algorithmic refinement. As it stands, the pipeline operates
on complete data records. To adapt to real-time demands, a transition to a streaming input
mechanism—capable of processing smaller, successive data segments—would be essential.

Concerning the processing of data collected by TWCs toys and by camera glasses, CNR-ISTC
presented two improvements of the software which manage the logs of the two devices. Such
enhancement was developed to facilitate and promote the use of the tools by non-expert
researchers. In detail CNR-ISTC presented a GUI for the “eye contact detector” tool (see sec. 3
“Processing of visual information”), and a new components integration which solve the problem
of data synchronization from different devices, namely the TWC toys and the camera glasses
(see sec. 4 “Processing of interaction between child, PlusMe and Therapist”). Both
improvements are currently (September 2023) in test phase at SAPIENZA.

Finally, effort has to be made on fusing the two datastreams. Currently, two separate models are
trained on the physiological and camera features. After the testing phase, future efforts could be
focused on bringing these features together in one model. Combining the two sources of
information could leverage the performance of the whole system.
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History of Changes

No. Description

1 Version updated from 1 to 2 (March 2024)

2 At the end of section 2.1 “Signal Quality Indicator” (page 6), the following content
was added:

“It should be noted that the SQI only takes the ECG signal as input. This is a
deliberate decision as ECG is a more sensitive and faster responding biosignal
than EDA. If good quality ECG can be obtained, we can safely assume this to be
the case for EDA as well. This assumption can be further supported by the fact
that the majority of the noise experienced in IM-TWIN comes from large body
movements and that the electrodes of both signals are placed very close to each
other. As such, movement artifacts in one signal are highly correlated to artifacts
in the other biosignal.”
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